Newton equality constrained with infeasible starting point
s.t.
where is convex and twice differentiable, and with , given a starting point .
Code example
Consider the following quadratic problem: s.t.
where , ,
and ,
//commons-math client code
RealMatrix Pmatrix = new Array2DRowRealMatrix(new double[][] {
{ 1.68, 0.34, 0.38 },
{ 0.34, 3.09, -1.59 },
{ 0.38, -1.59, 1.54 } });
RealVector qVector = new ArrayRealVector(new double[] { 0.018, 0.025, 0.01 });
// Objective function
double theta = 0.01522;
RealMatrix P = Pmatrix.scalarMultiply(theta);
RealVector q = qVector.mapMultiply(-1);
PDQuadraticMultivariateRealFunction objectiveFunction = new PDQuadraticMultivariateRealFunction(P.getData(), q.toArray(), 0);
OptimizationRequest or = new OptimizationRequest();
or.setF0(objectiveFunction);
or.setInitialPoint(new double[] { 0.1, 0.1, 0.1 });//LE-infeasible starting point
or.setA(new double[][] { { 1, 1, 1 } });
or.setB(new double[] { 1 });
// optimization
NewtonLEConstrainedISP opt = new NewtonLEConstrainedISP();
opt.setOptimizationRequest(or);
opt.optimize();
double[] sol = opt.getOptimizationResponse().solution; sol[0] = 0.04632311556; sol[1] = 0.50863084610; sol[2] = 0.44504603834;

